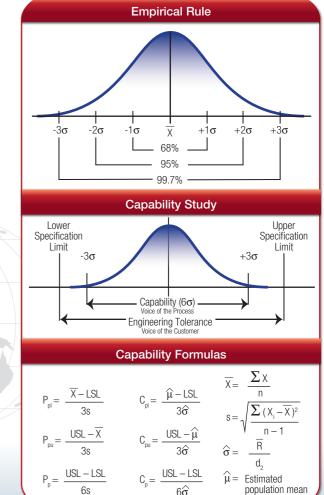

	Pp and Ppk Fallout Rate	es
Calculated	P _p Fallout	P _{pk} Fallout
Capability Ratio	(both sides combined)	(one side only)
0.50	133,620	66,810
0.60	71,860	35,930
0.70 0.80	35,730 16,396 6,934	17,865 8,198 3,467
0.90 1.00 1.10	2,700 966	1,350 483
1.20	318	159
1.30	96	48
1.40	26	13
1.50	7	3
1.60	2	1
1.70	0.340	0.170
1.80	0.060	0.030
1.90	0.012	0.006
2.00	0.002	0.001
Fallout rates expre	essed in PPM (narts ner million)	

Fallout rates expressed in PPM (parts per million)

Control Chart Constants									
	\overline{X} and R Control Charts			\overline{X} and S Control Charts					
n	A_2	D_3	D_4	d ₂	n	A ₃	B_3	B_4	C4
1	2.660	-	-	-	10	0.975	0.284	1.716	0.9727
2	1.880	0	3.267	1.128	11	0.927	0.321	1.679	0.9754
3	1.023	0	2.574	1.693	12	0.886	0.354	1.646	0.9776
4	0.729	0	2.282	2.059	13	0.850	0.382	1.618	0.9794
5	0.577	0	2.114	2.326	14	0.817	0.406	1.594	0.9810
6	0.483	0	2.004	2.534	15	0.789	0.428	1.572	0.9823
7	0.419	0.076	1.924	2.704	16	0.763	0.448	1.552	0.9835
8	0.373	0.136	1.864	2.847	17	0.739	0.466	1.534	0.9845
9	0.337	0.184	1.816	2.970	18	0.718	0.482	1.518	0.9854
10	0.308	0.223	1.777	3.078	19	0.698	0.497	1.503	0.9862
11	0.285	0.256	1.744	3.173	20	0.680	0.510	1.490	0.9869
12	0.266	0.283	1.717	3.258	21	0.663	0.523	1.477	0.9876
					22	0.647	0.534	1.466	0.9882
					23	0.633	0.545	1.455	0.9887
					24	0.619	0.555	1.445	0.9892
					25	0.606	0.565	1.435	0.9896

To order pocket cards, contact:

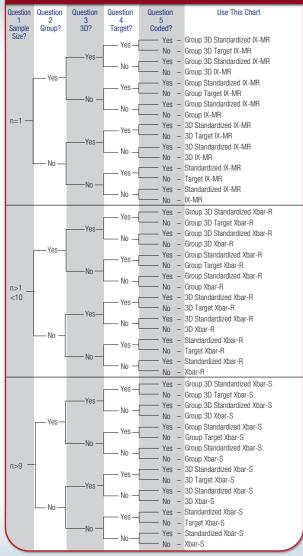
InfinityQS[®]


www.infinityqs.com

Washington DC | Seattle | London | Beijing | Shanghai

North America: 1.800.772.7978 Europe: +44 (0)800.888.6200 China: 86)10 6569 9909

InfinityQS[®] SPC Pocket Card



For more information, visit www.infinitygs.com

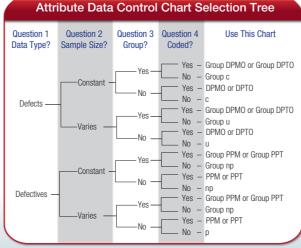
© InfinityOS International, Inc.

Variable Data Control Chart Selection Tree

InfinityQS Supports All These Variables Control Charts And Many More

Decision Tree Definitions

Data Type: There are two types of attribute data - defects and defectives. Defects data are count data and are described with a Poisson distribution. Counting the number of visual blemishes on a part or the number of support calls received in an hour are examples of defects data. Defectives data are pass/fail in nature. The number of rejected parts in a lot is an example of defective data. Defectives data are described with a binomial distribution.


Sample Size: The number of items in a single subgroup.

Group: Group processing is required when desiring to combine multiple process streams on the same chart. Plotting the output from multiple fill heads, a multi-cavity mold or multiple lines are classic examples for using Group charts.

3D: Used when measuring within-piece and piece-to-piece variation. Examples include measuring a spacer thickness in multiple places or measuring a bore diameter in three places to test for out-of-roundness.

Target: This processing is required when combining characteristics on the same chart that have different nominal or target values.

Coded: This processing is required when combining characteristics on the same chart that are of different units of measure, different expected levels of variation or different expected fallout rates.

InfinityQS Supports All These Variables Control Charts And Many More

Control Chart Formulas

Variables Control Charts

Chart Type	Centerline	Control Limits	Estimate of Sigma
X and R	$\overline{\overline{X}} = \frac{\sum \overline{X}}{k}$ $\overline{R} = \frac{\sum R}{k}$	$\begin{array}{l} \text{UCL }_{\overline{X}} = \overline{\overline{X}} + A_2 \overline{R} \\ \text{LCL }_{\overline{X}} = \overline{\overline{X}} - A_2 \overline{R} \\ \text{UCL }_{R} = D_4 \overline{R} \\ \text{LCL }_{R} = D_3 \overline{R} \end{array}$	\overline{R}/d_2
IX and MR	$\overline{IX} = \frac{\sum IX}{k}$ $\overline{IR} = \frac{\sum MR}{k-1}$	$\begin{array}{rl} \text{UCL}_{\text{IX}} &= \overline{\text{IX}} + \text{A}_{2}\overline{\text{MR}}\\ \text{LCL}_{\text{IX}} &= \overline{\text{IX}} - \text{A}_{2}\overline{\text{MR}}\\ \text{UCL}_{\text{MR}} &= \text{D}_{4}\overline{\text{MR}}\\ \text{LCL}_{\text{MR}} &= 0 \end{array}$	MR/d2
X and s	$\overline{\overline{X}} = \frac{\sum \overline{X}}{k}$ $\overline{s} = \frac{\sum s}{k}$	$\begin{array}{l} \text{UCL} \ \overline{\chi} = \overline{\overline{X}} + A_3 \ \overline{s} \\ \text{LCL} \ \overline{\chi} = \overline{\overline{X}} - A_3 \ \overline{s} \\ \text{UCL} \ s = B_4 \ \overline{s} \\ \text{LCL} \ s = B_3 \ \overline{s} \end{array}$	<u>\$</u> /c4

Attribute Control Charts Chart Type Centerline Control Limits Estimate of Sigma $\text{UCL}_p = \overline{p} + 3\sqrt{\frac{\overline{p}(1-\overline{p})}{n}}$ $\overline{p} = \frac{\sum p}{k}$ (<u>p(1-p</u>) р $LCL_{D} = \overline{p} - 3$ $UCL_{np} = n\overline{p} + 3 \sqrt{n\overline{p}(1-\overline{p})}$ Σ np np $\sqrt{n\overline{p}(1-\overline{p})}$ np = LCL np= n \overline{p} -3 $\sqrt{n\overline{p}(1-\overline{p})}$ $UCL_{c} = \overline{c} + 3\sqrt{\overline{c}}$ $\overline{c} = \frac{\sum c}{k}$ $\sqrt{\overline{C}}$ С $LCL_{C} = \overline{C} - 3 \sqrt{\overline{C}}$ $UCL_{II} = \overline{u} + 3 \sqrt{\overline{u}}$ $\overline{u} = \frac{\sum u}{k}$ и $\sqrt{\overline{u}}_{n}$ $LCL_{II} = \overline{u} \cdot 3 / \overline{u}$